1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
use std::ops::Sub;
pub type Rangef = InclusiveRange<f32>;
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct InclusiveRange<T: Copy + PartialOrd + Sub> {
pub min: T,
pub max: T
}
pub const RANGE_0_1_F32: InclusiveRange<f32> = InclusiveRange { min: 0.0, max: 1.0 };
fn pomax<T: PartialOrd>(a: T, b: T) -> T {
if a > b { a } else { b }
}
fn pomin<T: PartialOrd>(a: T, b: T) -> T {
if a < b { a } else { b }
}
impl<T: Copy + PartialOrd + Sub<Output=T>> InclusiveRange<T> {
pub fn new(min: T, max: T) -> InclusiveRange<T> {
assert!(min <= max);
InclusiveRange { min: min, max: max }
}
pub fn from_sorting(a: T, b: T) -> InclusiveRange<T> {
if a <= b {
InclusiveRange { min: a, max: b }
}
else {
InclusiveRange { min: b, max: a }
}
}
pub fn empty(self) -> bool {
self.min == self.max
}
pub fn length(self) -> T {
self.max - self.min
}
pub fn expand(&mut self, other: InclusiveRange<T>) {
self.min = pomin(self.min, other.min);
self.max = pomax(self.max, other.max);
}
}
pub fn range_clamp<T: Copy + PartialOrd + Sub<Output=T>>
(a: InclusiveRange<T>, b: InclusiveRange<T>)
-> Option<InclusiveRange<T>> {
let min = pomax(a.min, b.min);
let max = pomin(a.max, b.max);
if min <= max {
Some(InclusiveRange::new(min, max))
}
else {
None
}
}
pub fn range_combine<T: Copy + PartialOrd + Sub<Output=T>>(a: InclusiveRange<T>,
b: InclusiveRange<T>)
-> InclusiveRange<T> {
InclusiveRange::new(pomin(a.min, b.min),
pomax(a.max, b.max))
}
#[test]
fn test_from_sorting() {
assert_eq!(InclusiveRange::from_sorting(0, 1),
InclusiveRange::new(0, 1));
assert_eq!(InclusiveRange::from_sorting(1, 1),
InclusiveRange::new(1, 1));
assert_eq!(InclusiveRange::from_sorting(1, 0),
InclusiveRange::new(0, 1));
}
#[test]
fn test_empty() {
assert_eq!(InclusiveRange::new(0, 1).empty(), false);
assert_eq!(InclusiveRange::new(0, 0).empty(), true);
assert_eq!(InclusiveRange::new(0.5, 0.5).empty(), true);
}
#[test]
fn test_range_clamp() {
assert!(range_clamp(InclusiveRange::new(0, 2),
InclusiveRange::new(0, 2)) ==
Some(InclusiveRange::new(0, 2)));
assert!(range_clamp(InclusiveRange::new(0, 1),
InclusiveRange::new(2, 3)) ==
None);
assert!(range_clamp(InclusiveRange::new(2, 3),
InclusiveRange::new(0, 1)) ==
None);
assert!(range_clamp(InclusiveRange::new(0, 2),
InclusiveRange::new(1, 3)) ==
Some(InclusiveRange::new(1, 2)));
assert!(range_clamp(InclusiveRange::new(1, 3),
InclusiveRange::new(0, 2)) ==
Some(InclusiveRange::new(1, 2)));
assert!(range_clamp(InclusiveRange::new(1.0, 3.0),
InclusiveRange::new(0.0, 2.0)) ==
Some(InclusiveRange::new(1.0, 2.0)));
}
#[test]
fn test_range_expand() {
let mut r = InclusiveRange::new(0, 1);
r.expand(InclusiveRange::new(-1, 2));
assert!(r == InclusiveRange::new(-1, 2));
}
#[test]
fn test_range_combine() {
assert!(range_combine(InclusiveRange::new(0, 2),
InclusiveRange::new(-2, 1)) ==
InclusiveRange::new(-2, 2));
}
#[test]
fn test_range_length() {
assert!(InclusiveRange::new(-1, 2).length() == 3);
assert!(InclusiveRange::new(-1.0, 2.5).length() == 3.5);
}