1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
use vec2f::{Line2f, Vec2f};
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct Quad2f {
pub points: (Vec2f, Vec2f, Vec2f, Vec2f)
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum IBLerpResult {
NoSolution,
OneSolution(Vec2f),
TwoSolutions(Vec2f, Vec2f),
ManySolutions
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum InvBilerpResult {
NoSolution,
OneSolution(f32),
TwoSolutions(f32, f32),
ManySolutions
}
impl Quad2f {
pub fn new(a: Vec2f, b: Vec2f, c: Vec2f, d: Vec2f) -> Quad2f {
Quad2f {
points: (a, b, c, d)
}
}
pub fn iblerp(self, point: Vec2f) -> IBLerpResult {
let p0mp = self.points.0 - point;
let p1mp = self.points.1 - point;
let p0mp3 = self.points.0 - self.points.3;
let p1mp2 = self.points.1 - self.points.2;
let a = p0mp.cross(p0mp3);
let b0 = p0mp.cross(p1mp2);
let b1 = p1mp.cross(p0mp3);
let b = (b0 + b1) / 2.0;
let c = p1mp.cross(p1mp2);
let calc_st = |s| {
let den = (1.0 - s) * p0mp3.x + s * p1mp2.x;
let t = if den == 0.0 {
let rb = self.points.0.lerp(self.points.1, s);
let rt = self.points.3.lerp(self.points.2, s);
Line2f::new(rb, rt).closest_parametric_point(point)
}
else {
((1.0 - s) * (p0mp.x) + s * p1mp.x) / den
};
Vec2f::new(s, t)
};
let den = a - (2.0 * b) + c;
if den == 0.0 {
let m = a - c;
if m == 0.0 {
if a == 0.0 {
IBLerpResult::ManySolutions
}
else {
IBLerpResult::NoSolution
}
}
else {
IBLerpResult::OneSolution(calc_st(a / m))
}
}
else {
let left = a - b;
let right = (b.powi(2) - a*c).sqrt();
let s0 = (left + right) / den;
let s1 = (left - right) / den;
IBLerpResult::TwoSolutions(calc_st(s0), calc_st(s1))
}
}
pub fn inv_bilerp_u(self, point: Vec2f) -> InvBilerpResult {
let p0mp = self.points.0 - point;
let p1mp = self.points.1 - point;
let p0mp3 = self.points.0 - self.points.3;
let p1mp2 = self.points.1 - self.points.2;
let a = p0mp.cross(p0mp3);
let b0 = p0mp.cross(p1mp2);
let b1 = p1mp.cross(p0mp3);
let b = (b0 + b1) / 2.0;
let c = p1mp.cross(p1mp2);
let den = a - (2.0 * b) + c;
if den == 0.0 {
let m = a - c;
if m == 0.0 {
if a == 0.0 {
InvBilerpResult::ManySolutions
}
else {
InvBilerpResult::NoSolution
}
}
else {
InvBilerpResult::OneSolution(a / m)
}
}
else {
let left = a - b;
let right = (b.powi(2) - a*c).sqrt();
let s0 = (left + right) / den;
let s1 = (left - right) / den;
InvBilerpResult::TwoSolutions(s0, s1)
}
}
pub fn lerp_bottom(self, u: f32) -> Vec2f {
self.points.0.lerp(self.points.1, u)
}
pub fn lerp_top(self, u: f32) -> Vec2f {
self.points.3.lerp(self.points.2, u)
}
pub fn lerp_left(self, v: f32) -> Vec2f {
self.points.0.lerp(self.points.3, v)
}
pub fn lerp_right(self, v: f32) -> Vec2f {
self.points.1.lerp(self.points.2, v)
}
pub fn blerp(self, uv: Vec2f) -> Vec2f {
let rb = self.points.0.lerp(self.points.1, uv.x);
let rt = self.points.3.lerp(self.points.2, uv.x);
rb.lerp(rt, uv.y)
}
}
#[cfg(test)]
mod test {
use super::*;
use vec2f::vec2f;
#[test]
fn test_inv_bilerp_u() {
let q = Quad2f::new(vec2f(0, 0),
vec2f(4, 0),
vec2f(4, 4),
vec2f(0, 4));
assert_eq!(q.inv_bilerp_u(vec2f(2, 2)),
InvBilerpResult::OneSolution(0.5));
assert_eq!(q.inv_bilerp_u(vec2f(1, 2)),
InvBilerpResult::OneSolution(0.25));
assert_eq!(q.inv_bilerp_u(vec2f(1, 3)),
InvBilerpResult::OneSolution(0.25));
}
#[test]
fn test_iblerp() {
let q = Quad2f::new(vec2f(0, 0),
vec2f(4, 0),
vec2f(4, 4),
vec2f(0, 4));
assert_eq!(q.iblerp(vec2f(2, 2)),
IBLerpResult::OneSolution(vec2f(0.5, 0.5)));
}
}